Using MIB Browser for SNMP Walk/Query

At times you would need to quick easy way to do a SNMPwalk/query for specific OIDs of your managed devices for some troubleshooting purpose.

This could be done using open/free snmp tools available on the internet. I found the Ireasoning mib browser quick helpful and easy.

http://ireasoning.com/mibbrowser.shtml

Install the Mib Browser and add your managed device using v2/v3.

Configured the MIB browser as following: Tools > Options > Agent > Add > Add the managed device ip address and the community string.

Get the correct MIB file for your managed device. I am using Cisco WLC as the managed device and got the MIB downloaded from the Cisco support Site.

http://software.cisco.com/download/release.html?mdfid=284493532&flowid=34542&softwareid=280775088&release=8.0&relind=AVAILABLE&rellifecycle=&reltype=latest

Load the correct MIB file on the Mib Browser. File > Load Mibs > Choose the file location.

Browse and poll for the related OID.

I am polling for the AP native vlan Id as follows:

 

If you know the OID, you can directly use the OID and do get to get the related information:

 

Hope this would be helpful.

 

SNMPWALK from Prime Infrastructure

Many a times when information is not polled correctly on Cisco PI, from your WLC or any other added devices, you would like to check if the device is responding to SNMP queries send by the Cisco Prime or not.

SNMP walk would be good test to check if are getting any SNMP response from the managed devices. Following would be the syntax for the Snmpv2 and Snmpv3 for doing an snmp walk from your Cisco Prime.

You need to have root access to run the snmpwalk on the Cisco Prime.

SNMPWALK VERSION 2
nms-pi/admin#
root
Enter
root patch password :
Starting root bash shell …
ade # su – [root@nms-pi ~]# snmpwalk -v2c -c <community> <ip>

You can also follow this with the OID or the MIB identifier you want to query, like:

[root@nms-pi~]#snmpwalk -v2c -c bharath 10.10.10.10 1.3.6.1.4.1.9.9.513.1.2.10.1.2
[root@nms-pi~]#snmpwalk -v2c -c bharath 10.10.10.10 cLApDot11RadioRateStatsRxPackets

SNMPWALK VERSION 3

[root@nms-pi ~]#snmpwalk -v3 -l <noAuthNoPriv|authNoPriv|authPriv> -u <username> [-a <MD5|SHA>] [-A <authphrase>]  [-x DES|AES] [-X <privaphrase>] <ipaddress>[:<dest_port>]

[root@nms-pi ~]#snmpwalk -v3 -u piv3user -l authPriv -a SHA -A piv3user1234 -x AES -X piv3user1234 10.10.10.1 cLApDot11RadioRateStatsRxPackets

Hope this would be helpful..

BGP AD manipulation

Many a times there are situations wherein you are running two routing protocols in our case BGP and any IGP protocol and you would like to prefer the route learned by IGP over BGP. However the problem here is that by default eBGP has an AD of 20 which will take preference over the other IGP protocols (OSPF= 110, EIGRP = 90, IS-IS = 115, RIP = 120).

Lets discuss how we can make this work. There are couple of options to achieve this:

  • Changing the AD for the route learned from the specific BGP neighbor.

 

 

 

 

We will use the command: distance <AD> <neighbor> <wildcard> <optional ACL>

The ip route on the R1 :
====================


R1#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static route
o – ODR, P – periodic downloaded static route

Gateway of last resort is not set
100.0.0.0/24 is subnetted, 1 subnets
B 100.171.106.0 [20/0] via 20.20.20.3, 00:08:29
20.0.0.0/24 is subnetted, 1 subnets
C 20.20.20.0 is directly connected, FastEthernet0/1
8.0.0.0/24 is subnetted, 1 subnets
B 8.8.8.0 [20/0] via 20.20.20.3, 00:09:10
10.0.0.0/24 is subnetted, 1 subnets
C 10.10.10.0 is directly connected, FastEthernet0/0

R1#show ip route 100.171.106.0
Routing entry for 100.171.106.0/24
Known via “bgp 65457”, distance 20, metric 0
Tag 65000, type external
Last update from 20.20.20.3 00:08:50 ago
Routing Descriptor Blocks:
* 20.20.20.3, from 20.20.20.3, 00:08:50 ago
Route metric is 0, traffic share count is 1
AS Hops 1

After adding the distance statement in BGP on R1 and rebuilding the peering:

R1(config)#access-list 1 permit 100.171.106.0 0.0.0.255
R1(config)#router bgp 65457
R1(config-router)#distance 200 20.20.20.3 255.255.255.255 1
R1#clear ip bgp 20.20.20.3

R1#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static route
o – ODR, P – periodic downloaded static route
Gateway of last resort is not set100.0.0.0/24 is subnetted, 1 subnets
D 100.171.106.0 [90/30720] via 10.10.10.2, 00:00:38, FastEthernet0/0
20.0.0.0/24 is subnetted, 1 subnets
C 20.20.20.0 is directly connected, FastEthernet0/1
8.0.0.0/24 is subnetted, 1 subnets
B 8.8.8.0 [20/0] via 20.20.20.3, 00:00:10
10.0.0.0/24 is subnetted, 1 subnets
C 10.10.10.0 is directly connected, FastEthernet0/0

R1#show ip route 100.171.106.0
Routing entry for 100.171.106.0/24
Known via “eigrp 1”, distance 90, metric 30720, type internal
Redistributing via eigrp 1
Last update from 10.10.10.2 on FastEthernet0/0, 00:02:38 ago
Routing Descriptor Blocks:

* 10.10.10.2, from 10.10.10.2, 00:02:38 ago, via FastEthernet0/0
Route metric is 30720, traffic share count is 1
Total delay is 200 microseconds, minimum bandwidth is 100000 Kbit
Reliability 255/255, minimum MTU 1500 bytes
Loading 1/255, Hops 1

Please note that this can also cause asymmetric routing issues. Lets see the below example.

In the above topology we are modifying the AD at the R2 and thus following is the R2 configuration:

router ospf 1
log-adjacency-changes
summary-address 192.168.20.0 255.255.255.0
redistribute connected subnets
network 30.30.30.0 0.0.0.255 area 0
!
router bgp 2
no synchronization
bgp log-neighbor-changes
network 192.168.20.0
neighbor 20.20.20.1 remote-as 1
distance 200 0.0.0.0 255.255.255.255 1
no auto-summary

R2#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static route
o – ODR, P – periodic downloaded static route
Gateway of last resort is not set

20.0.0.0/24 is subnetted, 1 subnets
C 20.20.20.0 is directly connected, FastEthernet0/0
O E2 192.168.10.0/24 [110/20] via 30.30.30.3, 01:22:57, FastEthernet0/1
C 192.168.20.0/24 is directly connected, Loopback0
10.0.0.0/24 is subnetted, 1 subnets
O E2 10.10.10.0 [110/20] via 30.30.30.3, 01:28:45, FastEthernet0/1
30.0.0.0/24 is subnetted, 1 subnets
C 30.30.30.0 is directly connected, FastEthernet0/1

R2#show ip bgp
BGP table version is 4, local router ID is 192.168.20.2
Status codes: s suppressed, d damped, h history, * valid, > best, i – internal,
r RIB-failure, S Stale
Origin codes: i – IGP, e – EGP, ? – incomplete
Network Next Hop Metric LocPrf Weight Path
r> 192.168.10.0 20.20.20.1 0 1 3 i
*> 192.168.20.0 0.0.0.0 0 32768 i

R2#show ip bgp 192.168.10.0
BGP routing table entry for 192.168.10.0/24, version 4
Paths: (1 available, best #1, table Default-IP-Routing-Table, RIB-failure(17))
Not advertised to any peer
1 3
20.20.20.1 from 20.20.20.1 (20.20.20.1)
Origin IGP, localpref 100, valid, external, best

R2#traceroute 192.168.10.3
Type escape sequence to abort.
Tracing the route to 192.168.10.3

1 30.30.30.3 12 msec 28 msec 28 msec

On R3 we still see it preferring BGP route over IGP:

R3#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static route
o – ODR, P – periodic downloaded static route
Gateway of last resort is not set

20.0.0.0/24 is subnetted, 1 subnets
O E2 20.20.20.0 [110/20] via 30.30.30.2, 01:33:45, FastEthernet0/1
C 192.168.10.0/24 is directly connected, Loopback0
B 192.168.20.0/24 [20/0] via 10.10.10.1, 01:27:13
10.0.0.0/24 is subnetted, 1 subnets
C 10.10.10.0 is directly connected, FastEthernet0/0
30.0.0.0/24 is subnetted, 1 subnets
C 30.30.30.0 is directly connected, FastEthernet0/1

R3#show ip bgp
BGP table version is 5, local router ID is 30.30.30.3
Status codes: s suppressed, d damped, h history, * valid, > best, i – internal,
r RIB-failure, S Stale
Origin codes: i – IGP, e – EGP, ? – incomplete
Network Next Hop Metric LocPrf Weight Path
*> 192.168.10.0 0.0.0.0 0 32768 i
*> 192.168.20.0 10.10.10.1 0 1 2 i

R3#show ip bgp
R3#show ip bgp 192.168.20.0
BGP routing table entry for 192.168.20.0/24, version 5
Paths: (1 available, best #1, table Default-IP-Routing-Table)
Not advertised to any peer
1 2
10.10.10.1 from 10.10.10.1 (20.20.20.1)
Origin IGP, localpref 100, valid, external, best

R3#traceroute 192.168.20.2
Type escape sequence to abort.
Tracing the route to 192.168.20.2

1 10.10.10.1 28 msec 20 msec 16 msec
2 20.20.20.2 16 msec 20 msec 20 msec

You need to take care of asymmetric routing as this can be an issue for many applications.

  • Changing the BGP AD per address family.

 

By default, BGP has these distances:
External distance—20
Internal distance—200
Local distance—200

 

You can change the AD of all routes in the unicast, multicast or vrf address-family. This is done under the address-family section of the BGP process with the command, to change the default distance:

 

distance bgp <ebgp> <ibgp> <local routes>

 

This is not very scalable as all future BGP routes in that address-family will have their AD altered.
 Going back to our second topology, we see that the R2 router prefers BGP to reach to the network 192.168.10.0/24.

 

router bgp 2
no synchronization
bgp log-neighbor-changes
network 192.168.20.0
neighbor 20.20.20.1 remote-as 1
no auto-summary

 

R2#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static route
o – ODR, P – periodic downloaded static route

Gateway of last resort is not set
20.0.0.0/24 is subnetted, 1 subnets
C 20.20.20.0 is directly connected, FastEthernet0/0
B 192.168.10.0/24 [20/0] via 20.20.20.1, 00:01:01
C 192.168.20.0/24 is directly connected, Loopback0
10.0.0.0/24 is subnetted, 1 subnets
O E2 10.10.10.0 [110/20] via 30.30.30.3, 17:41:21, FastEthernet0/1
30.0.0.0/24 is subnetted, 1 subnets
C 30.30.30.0 is directly connected, FastEthernet0/1

 

Lets modify the default ADs for the BGP routes.

 

R2(config-router)#distance bgp ?
<1-255> Distance for routes external to the AS
R2(config-router)#distance bgp 120 ?
<1-255> Distance for routes internal to the AS
R2(config-router)#distance bgp 120 220 ?
<1-255> Distance for local routes
R2(config-router)#distance bgp 120 220 210 ?
<cr>

R2(config-router)#distance bgp 120 220 210

 

router bgp 2
no synchronization
bgp log-neighbor-changes
network 192.168.20.0
neighbor 20.20.20.1 remote-as 1
distance bgp 120 220 210
no auto-summary
!

R2#show ip protocols
Routing Protocol is “bgp 2”
Outgoing update filter list for all interfaces is not set
Incoming update filter list for all interfaces is not set
IGP synchronization is disabled
Automatic route summarization is disabled
Neighbor(s):
Address FiltIn FiltOut DistIn DistOut Weight RouteMap
20.20.20.1
Maximum path: 1
Routing Information Sources:
Gateway Distance Last Update
20.20.20.1 20 00:02:35
Distance: external 120 internal 220 local 210

R2#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static route
o – ODR, P – periodic downloaded static route
Gateway of last resort is not set20.0.0.0/24 is subnetted, 1 subnets
C 20.20.20.0 is directly connected, FastEthernet0/0
O E2 192.168.10.0/24 [110/20] via 30.30.30.3, 00:04:55, FastEthernet0/1
C 192.168.20.0/24 is directly connected, Loopback0
10.0.0.0/24 is subnetted, 1 subnets
O E2 10.10.10.0 [110/20] via 30.30.30.3, 17:49:14, FastEthernet0/1
30.0.0.0/24 is subnetted, 1 subnets
C 30.30.30.0 is directly connected, FastEthernet0/1

 

R2#show ip bgp 192.168.10.0
BGP routing table entry for 192.168.10.0/24, version 3
Paths: (1 available, best #1, table Default-IP-Routing-Table, RIB-failure(17))
Not advertised to any peer
1 3
20.20.20.1 from 20.20.20.1 (20.20.20.1)
Origin IGP, localpref 100, valid, external, best

 

R2#show ip bgp rib-failure
Network Next Hop RIB-failure RIB-NH Matches
192.168.10.0 20.20.20.1 Higher admin distance n/a

 

  • Using the BGP Backdoor :

 

With BGP Backdoor, BGP treats that network as a locally assigned network and thus changes the AD from 20 to 200. However it does not advertise that specific network into the BGP updates.

 

network <network> mask <network mask> backdoor

 

Some useful information on the following link:

 

 

 

R2#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static route
o – ODR, P – periodic downloaded static route

Gateway of last resort is not set
20.0.0.0/24 is subnetted, 1 subnets
C 20.20.20.0 is directly connected, FastEthernet0/0
192.168.10.0/32 is subnetted, 1 subnets
B 192.168.10.3 [20/0] via 20.20.20.1, 00:06:13
192.168.20.0/32 is subnetted, 1 subnets
C 192.168.20.2 is directly connected, Loopback0
30.0.0.0/24 is subnetted, 1 subnets
C 30.30.30.0 is directly connected, FastEthernet0/1

 

router bgp 2
no synchronization
bgp log-neighbor-changes
network 192.168.10.3 mask 255.255.255.255 backdoor
network 192.168.20.2 mask 255.255.255.255
neighbor 20.20.20.1 remote-as 1
no auto-summary

 

R2#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static route
o – ODR, P – periodic downloaded static route
Gateway of last resort is not set20.0.0.0/24 is subnetted, 1 subnets
C 20.20.20.0 is directly connected, FastEthernet0/0
192.168.10.0/32 is subnetted, 1 subnets
O 192.168.10.3 [110/2] via 30.30.30.3, 00:00:32, FastEthernet0/1
192.168.20.0/32 is subnetted, 1 subnets
C 192.168.20.2 is directly connected, Loopback0
30.0.0.0/24 is subnetted, 1 subnets
C 30.30.30.0 is directly connected, FastEthernet0/1

 

R2#show ip bgp
BGP table version is 4, local router ID is 192.168.20.2
Status codes: s suppressed, d damped, h history, * valid, > best, i – internal,
r RIB-failure, S Stale
Origin codes: i – IGP, e – EGP, ? – incomplete
Network Next Hop Metric LocPrf Weight Path
r> 192.168.10.3/32 20.20.20.1 0 1 3 i
*> 192.168.20.2/32 0.0.0.0 0 32768 i

 

R2#show ip bgp 192.168.10.3/32
BGP routing table entry for 192.168.10.3/32, version 4
Paths: (1 available, best #1, table Default-IP-Routing-Table, RIB-failure(17))
Not advertised to any peer
1 3
20.20.20.1 from 20.20.20.1 (20.20.20.1)
Origin IGP, localpref 100, valid, external, best

 

R2#show ip bgp rib-failure
Network Next Hop RIB-failure RIB-NH Matches
192.168.10.3/32 20.20.20.1 Higher admin distance n/a

 

  • Changing the AD of IGP :

 

We can also modify the AD of IGP to make it prefer  over BGP:

R2#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static route
o – ODR, P – periodic downloaded static route

Gateway of last resort is not set
20.0.0.0/24 is subnetted, 1 subnets
C 20.20.20.0 is directly connected, FastEthernet0/0
192.168.10.0/32 is subnetted, 1 subnets
B 192.168.10.3 [20/0] via 20.20.20.1, 00:00:05
192.168.20.0/32 is subnetted, 1 subnets
C 192.168.20.2 is directly connected, Loopback0
30.0.0.0/24 is subnetted, 1 subnets
C 30.30.30.0 is directly connected, FastEthernet0/1

R2(config)#access-list 10 permit 192.168.10.0 0.0.0.255
R2(config)#router ospf 1
R2(config-router)#distan
R2(config-router)#distance 15 30.30.30.3 255.255.255.255 10

router ospf 1
log-adjacency-changes
redistribute connected
network 30.30.30.0 0.0.0.255 area 0
network 192.168.20.0 0.0.0.255 area 0
distance 15 0.0.0.0 255.255.255.255 10

R2#show ip route
Codes: C – connected, S – static, R – RIP, M – mobile, B – BGP
D – EIGRP, EX – EIGRP external, O – OSPF, IA – OSPF inter area
N1 – OSPF NSSA external type 1, N2 – OSPF NSSA external type 2
E1 – OSPF external type 1, E2 – OSPF external type 2
i – IS-IS, su – IS-IS summary, L1 – IS-IS level-1, L2 – IS-IS level-2
ia – IS-IS inter area, * – candidate default, U – per-user static route
o – ODR, P – periodic downloaded static route
Gateway of last resort is not set20.0.0.0/24 is subnetted, 1 subnets
C 20.20.20.0 is directly connected, FastEthernet0/0
192.168.10.0/32 is subnetted, 1 subnets
O 192.168.10.3 [15/2] via 30.30.30.3, 00:01:35, FastEthernet0/1
192.168.20.0/32 is subnetted, 1 subnets
C 192.168.20.2 is directly connected, Loopback0
30.0.0.0/24 is subnetted, 1 subnets
C 30.30.30.0 is directly connected, FastEthernet0/1

 

 

Thanks….

CCIE R&S v5.1 Written Topics

Cisco is changing the CCIE R&S Written Exam from July 25th 2016. Following is the related information and exam topics.

https://learningnetwork.cisco.com/community/certifications/ccie_routing_switching/written_exam_v5/exam-topics

Written Topics:
=============







10% 1.0 Network Principles
1.1 Network theory
1.1.a Describe basic software architecture differences between IOS and IOS XE
1.1.a (i) Control plane and Forwarding plane
1.1.a (ii) Impact to troubleshooting and performances
1.1.a (iii) Excluding specific platform’s architecture
1.1.b Identify Cisco express forwarding concepts
1.1.b (i) RIB, FIB, LFIB, Adjacency table
1.1.b (ii) Load balancing Hash
1.1.b (iii) Polarization concept and avoidance
1.1.c Explain general network challenges
1.1.c (i) Unicast flooding
1.1.c (ii) Out of order packets
1.1.c (iii) Asymmetric routing
1.1.c (iv) Impact of micro burst
1.1.d Explain IP operations
1.1.d (i) ICMP unreachable, redirect
1.1.d (ii) IPv4 options, IPv6 extension headers
1.1.d (iii) IPv4 and IPv6 fragmentation
1.1.d (iv) TTL
1.1.d (v) IP MTU
1.1.e Explain TCP operations
1.1.e (i) IPv4 and IPv6 PMTU
1.1.e (ii) MSS
1.1.e (iii) Latency
1.1.e (iv) Windowing
1.1.e (v) Bandwidth delay product
1.1.e (vi) Global synchronization
2015 Cisco Systems, Inc. This document is Cisco Public. Page 2
1.1.e (vii) Options
1.1.f Explain UDP operations
1.1.f (i) Starvation
1.1.f (ii) Latency
1.1.f (iii) RTP/RTCP concepts
1.2 Network implementation and operation
1.2.a Evaluate proposed changes to a network
1.2.a (i) Changes to routing protocol parameters
1.2.a (ii) Migrate parts of a network to IPv6
1.2.a (iii) Routing protocol migration
1.2.a (iv) Adding multicast support
1.2.a (v) Migrate spanning tree protocol
1.2.a (vi) Evaluate impact of new traffic on existing QoS design
1.3 Network troubleshooting
1.3.a Use IOS troubleshooting tools
1.3.a (i) debug, conditional debug
1.3.a (ii) ping, traceroute with extended options
1.3.a (iii) Embedded packet capture
1.3.a (iv) Performance monitor
1.3.b Apply troubleshooting methodologies
1.3.b (i) Diagnose the root cause of networking issue (analyze symptoms,
identify and describe root cause)
1.3.b (ii) Design and implement valid solutions according to constraints
1.3.b (iii) Verify and monitor resolution
1.3.c Interpret packet capture
1.3.c (i) Using Wireshark trace analyzer
1.3.c (ii) Using IOS embedded packet capture
13% 2.0 Layer 2 Technologies
2.1 LAN switching technologies
2.1.a Implement and troubleshoot switch administration
2.1.a (i) Managing MAC address table
2.1.a (ii) errdisable recovery
2.1.a (iii) L2 MTU
2.1.b Implement and troubleshoot layer 2 protocols
2.1.b (i) CDP, LLDP
2.1.b (ii) UDLD
2.1.c Implement and troubleshoot VLAN
2.1.c (i) Access ports
2.1.c (ii) VLAN database
2.1.c (iii) Normal, extended VLAN, voice VLAN
2.1.d Implement and troubleshoot trunking
2.1.d (i) VTPv1, VTPv2, VTPv3, VTP pruning
2.1.d (ii) dot1Q
2.1.d (iii) Native VLAN
2.1.d (iv) Manual pruning
2015 Cisco Systems, Inc. This document is Cisco Public. Page 3
2.1.e Implement and troubleshoot EtherChannel
2.1.e (i) LACP, PAgP, manual
2.1.e (ii) Layer 2, layer 3
2.1.e (iii) Load‐balancing
2.1.e (iv) Etherchannel misconfiguration guard
2.1.f Implement and troubleshoot spanning‐tree
2.1.f (i) PVST+/RPVST+/MST
2.1.f (ii) Switch priority, port priority, path cost, STP timers
2.1.f (iii) port fast, BPDUguard, BPDUfilter
2.1.f (iv) loopguard, rootguard
2.1.g Implement and troubleshoot other LAN switching technologies
2.1.g (i) SPAN, RSPAN, ERSPAN
2.1.h Describe chassis virtualization and aggregation technologies
2.1.h (i) Multichassis
2.1.h (ii) VSS concepts
2.1.h (iii) Alternative to STP
2.1.h (iv) Stackwise
2.1.h (v) Excluding specific platform implementation
2.1.i Describe spanning‐tree concepts
2.1.i (i) Compatibility between MST and RSTP
2.1.i (ii) STP dispute, STP bridge assurance
2.2 Layer 2 multicast
2.2.a Implement and troubleshoot IGMP
2.2.a (i) IGMPv1, IGMPv2, IGMPv3
2.2.a (ii) IGMP snooping
2.2.a (iii) IGMP querier
2.2.a (iv) IGMP filter
2.2.a (v) IGMP proxy
2.2.b Explain MLD
2.2.c Explain PIM snooping
2.3 Layer 2 WAN circuit technologies
2.3.a Implement and troubleshoot HDLC
2.3.b Implement and troubleshoot PPP
2.3.b (i) Authentication (PAP, CHAP)
2.3.b (ii) PPPoE
2.3.b (iii) MLPPP
2.3.c Describe WAN rate‐based ethernet circuits
2.3.c (i) Metro and WAN Ethernet topologies
2.3.c (ii) Use of rate‐limited WAN ethernet services
37% 3.0 Layer 3 Technologies
3.1 Addressing technologies
3.1.a Identify, implement and troubleshoot IPv4 addressing and subnetting
3.1.a (i) Address types, VLSM
3.1.a (ii) ARP
3.1.b Identify, implement and troubleshoot IPv6 addressing and subnetting
2015 Cisco Systems, Inc. This document is Cisco Public. Page 4
3.1.b (i) Unicast, multicast
3.1.b (ii) EUI‐64
3.1.b (iii) ND, RS/RA
3.1.b (iv) Autoconfig/SLAAC, temporary addresses (RFC4941)
3.1.b (v) Global prefix configuration feature
3.1.b (vi) DHCP protocol operations
3.1.b (vii) SLAAC/DHCPv6 interaction
3.1.b (viii) Stateful, stateless DHCPv6
3.1.b (ix) DHCPv6 prefix delegation
3.2 Layer 3 multicast
3.2.a Troubleshoot reverse path forwarding
3.2.a (i) RPF failure
3.2.a (ii) RPF failure with tunnel interface
3.2.b Implement and troubleshoot IPv4 protocol independent multicast
3.2.b (i) PIM dense mode, sparse mode, sparse‐dense mode
3.2.b (ii) Static RP, auto‐RP, BSR
3.2.b (iii) BiDirectional PIM
3.2.b (iv) Source‐specific multicast
3.2.b (v) Group to RP mapping
3.2.b (vi) Multicast boundary
3.2.c Implement and troubleshoot multicast source discovery protocol
3.2.c (i) Intra‐domain MSDP (anycast RP)
3.2.c (ii) SA filter
3.2.d Describe IPv6 multicast
3.2.d (i) IPv6 multicast addresses
3.2.d (ii) PIMv6
3.3 Fundamental routing concepts
3.3.a Implement and troubleshoot static routing
3.3.b Implement and troubleshoot default routing
3.3.c Compare routing protocol types
3.3.c (i) Distance vector
3.3.c (ii) Link state
3.3.c (iii) Path vector
3.3.d Implement, optimize and troubleshoot administrative distance
3.3.e Implement and troubleshoot passive interface
3.3.f Implement and troubleshoot VRF lite
3.3.g Implement, optimize and troubleshoot filtering with any routing protocol
3.3.h Implement, optimize and troubleshoot redistribution between any routing
protocol
3.3.i Implement, optimize and troubleshoot manual and auto summarization with
any routing protocol
3.3.j Implement, optimize and troubleshoot policy‐based routing
3.3.k Identify and troubleshoot sub‐optimal routing
3.3.l Implement and troubleshoot bidirectional forwarding detection
3.3.m Implement and troubleshoot loop prevention mechanisms
3.3.m (i) Route tagging, filtering
2015 Cisco Systems, Inc. This document is Cisco Public. Page 5
3.3.m (ii) Split horizon
3.3.m (iii) Route poisoning
3.3.n Implement and troubleshoot routing protocol authentication
3.3.n (i) MD5
3.3.n (ii) Key‐chain
3.3.n (iii) EIGRP HMAC SHA2‐256bit
3.3.n (iv) OSPFv2 SHA1‐196bit
3.3.n (v) OSPFv3 IPsec authentication
3.4 RIP (v2 and v6)
3.4.a Implement and troubleshoot RIPv2
3.4.b Describe RIPv6 (RIPng)
3.5 EIGRP (for IPv4 and IPv6)
3.5.a Describe packet types
3.5.a (i) Packet types (hello, query, update, and such)
3.5.a (ii) Route types (internal, external)
3.5.b Implement and troubleshoot neighbor relationship
3.5.b (i) Multicast, unicast EIGRP peering
3.5.b (ii) OTP point‐to‐point peering
3.5.b (iii) OTP route‐reflector peering
3.5.b (iv) OTP multiple service providers scenario
3.5.c Implement and troubleshoot loop free path selection
3.5.c (i) RD, FD, FC, successor, feasible successor
3.5.c (ii) Classic metric
3.5.c (iii) Wide metric
3.5.d Implement and troubleshoot operations
3.5.d (i) General operations
3.5.d (ii) Topology table, update, query, active, passive
3.5.d (iii) Stuck in active
3.5.d (iv) Graceful shutdown
3.5.e Implement and troubleshoot EIGRP stub
3.5.e (i) Stub
3.5.e (ii) Leak‐map
3.5.f Implement and troubleshoot load‐balancing
3.5.f (i) equal‐cost
3.5.f (ii) unequal‐cost
3.5.f (iii) add‐path
3.5.g Implement EIGRP (multi‐address) named mode
3.5.g (i) Types of families
3.5.g (ii) IPv4 address‐family
3.5.g (iii) IPv6 address‐family
3.5.h Implement, troubleshoot and optimize EIGRP convergence and scalability
3.5.h (i) Describe fast convergence requirements
3.5.h (ii) Control query boundaries
3.5.h (iii) IP FRR/fast reroute (single hop)
3.5.8 (iv) Summary leak‐map
3.5.h (v) Summary metric
2015 Cisco Systems, Inc. This document is Cisco Public. Page 6
3.6 OSPF (v2 and v3)
3.6.a Describe packet types
3.6.a (i) LSA yypes (1, 2, 3, 4, 5, 7, 9)
3.6.a (ii) Route types (N1, N2, E1, E2)
3.6.b Implement and troubleshoot neighbor relationship
3.6.c Implement and troubleshoot OSPFv3 address‐family support
3.6.c (i) IPv4 address‐family
3.6.c (ii) IPv6 address‐family
3.6.d Implement and troubleshoot network types, area types and router types
3.6.d (i) Point‐to‐point, multipoint, broadcast, non‐broadcast
3.6.d (ii) LSA types, area type: backbone, normal, transit, stub, NSSA, totally
stub
3.6.d (iii) Internal router, ABR, ASBR
3.6.d (iv) Virtual link
3.6.e Implement and troubleshoot path preference
3.6.f Implement and troubleshoot operations
3.6.f (i) General operations
3.6.f (ii) Graceful shutdown
3.6.f (iii) GTSM (Generic TTL Security Mechanism)
3.6.g Implement, troubleshoot and optimize OSPF convergence and scalability
3.6.g (i) Metrics
3.6.g (ii) LSA throttling, SPF tuning, fast hello
3.6.g (iii) LSA propagation control (area types, ISPF)
3.6.g (iv) IP FRR/fast reroute (single hop)
3.6.g (v) LFA/loop‐free alternative (multi hop)
3.6.g (vi) OSPFv3 prefix suppression
3.7 BGP
3.7.a Describe, implement and troubleshoot peer relationships
3.7.a (i) Peer‐group, template
3.7.a (ii) Active, passive
3.7.a (iii) States, timers
3.7.a (iv) Dynamic neighbors
3.7.b Implement and troubleshoot IBGP and EBGP
3.7.b (i) EBGP, IBGP
3.7.b (ii) 4 bytes AS number
3.7.b (iii) Private AS
3.7.c Explain attributes and best‐path selection
3.7.d Implement, optimize and troubleshoot routing policies
3.7.d (i) Attribute manipulation
3.7.d (ii) Conditional advertisement
3.7.d (iii) Outbound route filtering
3.7.d (iv) Communities, extended communities
3.7.d (v) Multi‐homing
3.7.e Implement and troubleshoot scalability
3.7.e (i) Route‐reflector, cluster
3.7.e (ii) Confederations
2015 Cisco Systems, Inc. This document is Cisco Public. Page 7
3.7.e (iii) Aggregation, AS set
3.7.f Implement and troubleshoot multiproctocol BGP
3.7.f (i) IPv4, IPv6, VPN address‐family
3.7.g Implement and troubleshoot AS path manipulations
3.7.g (i) Local AS, allow AS in, remove private AS
3.7.g (ii) Prepend
3.7.g (iii) Regexp
3.7.h Implement and troubleshoot other features
3.7.h (i) Multipath
3.7.h (ii) BGP synchronization
3.7.h (iii) Soft reconfiguration, route refresh
3.7.i Describe BGP fast convergence features
3.7.i (i) Prefix independent convergence
3.7.i (ii) Add‐path
3.7.i (iii) Next‐hop address tracking
3.8 ISIS (for IPv4 and IPv6)
3.8.a Describe basic ISIS network
3.8.a (i) Single area, single topology
3.8.b Describe neighbor relationship
3.8.c Describe network types, levels and router types
3.8.c (i) NSAP addressing
3.8.c (ii) Point‐to‐point, broadcast
3.8.d Describe operations
3.8.e Describe optimization features
3.8.e (i) Metrics, wide metric
13% 4.0 VPN Technologies
4.1 Tunneling
4.1.a Implement and troubleshoot MPLS operations
4.1.a (i) Label stack, LSR, LSP
4.1.a (ii) LDP
4.1.a (iii) MPLS ping, MPLS traceroute
4.1.b Implement and troubleshoot basic MPLS L3VPN
4.1.b (i) L3VPN, CE, PE, P
4.1.b (ii) Extranet (route leaking)
4.1.c Implement and troubleshoot encapsulation
4.1.c (i) GRE
4.1.c (ii) Dynamic GRE
4.1.c (iii) LISP encapsulation principles supporting EIGRP OTP
4.1.d Implement and troubleshoot DMVPN (single hub)
4.1.d (i) NHRP
4.1.d (ii) DMVPN with IPsec using preshared key
4.1.d (iii) QoS profile
4.1.d (iv) Pre‐classify
4.1.e Describe IPv6 tunneling techniques
4.1.e (i) 6in4, 6to4
4.1.e (ii) ISATAP
2015 Cisco Systems, Inc. This document is Cisco Public. Page 8
4.1.e (iii) 6RD
4.1.e (iv) 6PE/6VPE
4.1.g Describe basic layer 2 VPN —wireline
4.1.g (i) L2TPv3 general principals
4.1.g (ii) ATOM general principals
4.1.h Describe basic L2VPN — LAN services
4.1.h (i) MPLS‐VPLS general principals
4.1.h (ii) OTV general principals
4.2 Encryption
4.2.a Implement and troubleshoot IPsec with preshared key
4.2.a (i) IPv4 site to IPv4 site
4.2.a (ii) IPv6 in IPv4 tunnels
4.2.a (iii) Virtual tunneling Interface (VTI)
4.2.b Describe GET VPN
5% 5.0 Infrastructure Security
5.1 Device security
5.1.a Implement and troubleshoot IOS AAA using local database
5.1.b Implement and troubleshoot device access control
5.1.b (i) Lines (VTY, AUX, console)
5.1.b (ii) SNMP
5.1.b (iii) Management plane protection
5.1.b (iv) Password encryption
5.1.c Implement and troubleshoot control plane policing
5.1.d Describe device security using IOS AAA with TACACS+ and RADIUS
5.1.d (i) AAA with TACACS+ and RADIUS
5.1.d (ii) Local privilege authorization fallback
5.2 Network security
5.2.a Implement and troubleshoot switch security features
5.2.a (i) VACL, PACL
5.2.a (ii) Stormcontrol
5.2.a (iii) DHCP snooping
5.2.a (iv) IP source‐guard
5.2.a (v) Dynamic ARP inspection
5.2.a (vi) port‐security
5.2.a (vii) Private VLAN
5.2.b Implement and troubleshoot router security features
5.2.b (i) IPv4 access control lists (standard, extended, time‐based)
5.2.b (ii) IPv6 traffic filter
5.2.b (iii) Unicast reverse path forwarding
5.2.c Implement and troubleshoot IPv6 first hop security
5.2.c (i) RA guard
5.2.c (ii) DHCP guard
5.2.c (iii) Binding table
5.2.c (iv) Device tracking
5.2.c (v) ND inspection/snooping
2015 Cisco Systems, Inc. This document is Cisco Public. Page 9
5.2.c (vii) Source guard
5.2.c (viii) PACL
5.2.d Describe 802.1x
5.2.d (i) 802.1x, EAP, RADIUS
5.2.d (ii) MAC authentication bypass
12% 6.0 Infrastructure Services
6.1 System management
6.1.a Implement and troubleshoot device management
6.1.a (i) Console and VTY
6.1.a (ii) telnet, HTTP, HTTPS, SSH, SCP
6.1.a (iii) (T)FTP
6.1.b Implement and troubleshoot SNMP
6.1.b (i) v2c, v3
6.1.c Implement and troubleshoot logging
6.1.c (i) Local logging, syslog, debug, conditional debug
6.1.c (ii) Timestamp
6.2 Quality of service
6.2.a Implement and troubleshoot end‐to‐end QoS
6.2.a (i) CoS and DSCP mapping
6.2.b Implement, optimize and troubleshoot QoS using MQC
6.2.b (i) Classification
6.2.b (ii) Network based application recognition (NBAR)
6.2.b (iii) Marking using IP precedence, DSCP, CoS, ECN
6.2.b (iv) Policing, shaping
6.2.b (v) Congestion management (queuing)
6.2.b (vi) HQoS, sub‐rate ethernet link
6.2.b (vii) Congestion avoidance (WRED)
6.2.c Describe layer 2 QoS
6.2.c (i) Queuing, scheduling
6.2.c (ii) Classification, marking
6.3 Network services
6.3.a Implement and troubleshoot first‐hop redundancy protocols
6.3.a (i) HSRP, GLBP, VRRP
6.3.a (ii) Redundancy using IPv6 RS/RA
6.3.b Implement and troubleshoot network time protocol
6.3.b (i) NTP master, client, version 3, version 4
6.3.b (ii) NTP Authentication
6.3.c Implement and troubleshoot IPv4 and IPv6 DHCP
6.3.c (i) DHCP client, IOS DHCP server, DHCP relay
6.3.c (ii) DHCP options
6.3.c (iii) DHCP protocol operations
6.3.c (iv) SLAAC/DHCPv6 interaction
6.3.c (v) Stateful, stateless DHCPv6
6.3.c (vi) DHCPv6 prefix delegation
6.3.d Implement and troubleshoot IPv4 network address translation
2015 Cisco Systems, Inc. This document is Cisco Public. Page 10
6.3.d (i) Static NAT, dynamic NAT, policy‐based NAT, PAT
6.3.d (ii) NAT ALG
6.3.e Describe IPv6 network address translation
6.3.e (i) NAT64
6.3.e (ii) NPTv6
6.4 Network optimization
6.4.a Implement and troubleshoot IP SLA
6.4.a (i) ICMP, UDP, Jitter, VoIP
6.4.b Implement and troubleshoot tracking object
6.4.b (i) Tracking object, tracking list
6.4.b (ii) Tracking different entities (e.g. interfaces, routes, IPSLA, and such)
6.4.c Implement and troubleshoot netflow
6.4.c (i) Netflow v5, v9
6.4.c (ii) Local retrieval
6.4.c (iii) Export (configuration only)
6.4.d Implement and troubleshoot embedded event manager
6.4.d (i) EEM policy using applet
6.4.e Identify performance routing (PfR)
6.4.e (i) Basic load balancing
6.4.e (ii) Voice optimization
10% 7.0 Evolving Technologies
7.1 Cloud
7.1.a Compare and contrast Cloud deployment models
7.1.a (i) Infrastructure, platform, and software services (XaaS)
7.1.a (ii) Performance and reliability
7.1.a (iii) Security and privacy
7.1.a (iv) Scalability and interoperability
7.1.b Describe Cloud implementations and operations
7.1.b (i) Automation and orchestration
7.1.b (ii) Workload mobility
7.1.b (iii) Troubleshooting and management
7.1.b (iv) OpenStack components
7.2 Network programmability (SDN)
7.2.a Describe functional elements of network programmability (SDN) and how they
interact
7.2.a (i) Controllers
7.2.a (ii) APIs
7.2.a (iii) Scripting
7.2.a (iv) Agents
7.2.a (v) Northbound vs. Southbound protocols
7.2.b Describe aspects of virtualization and automation in network environments
7.2.b (i) DevOps methodologies, tools and workflows
7.2.b (ii) Network/application function virtualization (NFV, AFV)
2015 Cisco Systems, Inc. This document is Cisco Public. Page 11
7.2.b (iii) Service function chaining
7.2.b (iv) Performance, availability, and scaling considerations
7.3 Internet of Things
7.3.a Describe architectural framework and deployment considerations for Internet of
Things (IoT)
7.3.a (i) Performance, reliability and scalability
7.3.a (ii) Mobility
7.3.a (iii) Security and privacy
7.3.a (iv) Standards and compliance
7.3.a (v) Migration
7.3.a (vi) Environmental impacts on the network

Thanks…

CCIE R&S v5.0 Written and Lab Topics

With effect from July 26th 2016 Cisco is changing the CCIE R&S Exam.

Following is the list of existing topics for the 5.0 version. Next post will follow the 5.1 topics.

 

https://learningnetwork.cisco.com/community/certifications/ccie_routing_switching/written_exam_v5/exam-topics

https://learningnetwork.cisco.com/community/certifications/ccie_routing_switching/lab_exam_v5/exam-topics

 

Written Topics:
============





10% 1.0 Network Principles
1.1 Network theory
1.1.a Describe basic software architecture differences between IOS and IOS XE
1.1.a (i) Control plane and Forwarding plane
1.1.a (ii) Impact to troubleshooting and performances
1.1.a (iii) Excluding specific platform’s architecture
1.1.b Identify Cisco express forwarding concepts
1.1.b (i) RIB, FIB, LFIB, Adjacency table
1.1.b (ii) Load balancing Hash
1.1.b (iii) Polarization concept and avoidance
1.1.c Explain general network challenges
1.1.c (i) Unicast flooding
1.1.c (ii) Out of order packets
1.1.c (iii) Asymmetric routing
1.1.c (iv) Impact of micro burst
1.1.d Explain IP operations
1.1.d (i) ICMP unreachable, redirect
1.1.d (ii) IPv4 options, IPv6 extension headers
1.1.d (iii) IPv4 and IPv6 fragmentation
1.1.d (iv) TTL
1.1.d (v) IP MTU
1.1.e Explain TCP operations
1.1.e (i) IPv4 and IPv6 PMTU
1.1.e (ii) MSS
2013 Cisco Systems, Inc. This document is Cisco Public. Page 2
1.1.e (iii) Latency
1.1.e (iv) Windowing
1.1.e (v) Bandwidth delay product
1.1.e (vi) Global synchronization
1.1.e (vii) Options
1.1.f Explain UDP operations
1.1.f (i) Starvation
1.1.f (ii) Latency
1.1.f (iii) RTP/RTCP concepts
1.2 Network implementation and operation
1.2.a Evaluate proposed changes to a network
1.2.a (i) Changes to routing protocol parameters
1.2.a (ii) Migrate parts of a network to IPv6
1.2.a (iii) Routing protocol migration
1.2.a (iv) Adding multicast support
1.2.a (v) Migrate spanning tree protocol
1.2.a (vi) Evaluate impact of new traffic on existing QoS design
1.3 Network troubleshooting
1.3.a Use IOS troubleshooting tools
1.3.a (i) debug, conditional debug
1.3.a (ii) ping, traceroute with extended options
1.3.a (iii) Embedded packet capture
1.3.a (iv) Performance monitor
1.3.b Apply troubleshooting methodologies
1.3.b (i) Diagnose the root cause of networking issue (analyze symptoms, identify and describe root cause)
1.3.b (ii) Design and implement valid solutions according to constraints
1.3.b (iii) Verify and monitor resolution
1.3.c Interpret packet capture
1.3.c (i) Using Wireshark trace analyzer
1.3.c (ii) Using IOS embedded packet capture
15% 2.0 Layer 2 Technologies
2.1 LAN switching technologies
2.1.a Implement and troubleshoot switch administration
2.1.a (i) Managing MAC address table
2.1.a (ii) errdisable recovery
2.1.a (iii) L2 MTU
2.1.b Implement and troubleshoot layer 2 protocols
2.1.b (i) CDP, LLDP
2.1.b (ii) UDLD
2013 Cisco Systems, Inc. This document is Cisco Public. Page 3
2.1.c Implement and troubleshoot VLAN
2.1.c (i) Access ports
2.1.c (ii) VLAN database
2.1.c (iii) Normal, extended VLAN, voice VLAN
2.1.d Implement and troubleshoot trunking
2.1.d (i) VTPv1, VTPv2, VTPv3, VTP pruning
2.1.d (ii) dot1Q
2.1.d (iii) Native VLAN
2.1.d (iv) Manual pruning
2.1.e Implement and troubleshoot EtherChannel
2.1.e (i) LACP, PAgP, manual
2.1.e (ii) Layer 2, layer 3
2.1.e (iii) Load-balancing
2.1.e (iv) Etherchannel misconfiguration guard
2.1.f Implement and troubleshoot spanning-tree
2.1.f (i) PVST+/RPVST+/MST
2.1.f (ii) Switch priority, port priority, path cost, STP timers
2.1.f (iii) port fast, BPDUguard, BPDUfilter
2.1.f (iv) loopguard, rootguard
2.1.g Implement and troubleshoot other LAN switching technologies
2.1.g (i) SPAN, RSPAN, ERSPAN
2.1.h Describe chassis virtualization and aggregation technologies
2.1.h (i) Multichassis
2.1.h (ii) VSS concepts
2.1.h (iii) Alternative to STP
2.1.h (iv) Stackwise
2.1.h (v) Excluding specific platform implementation
2.1.i Describe spanning-tree concepts
2.1.i (i) Compatibility between MST and RSTP
2.1.i (ii) STP dispute, STP bridge assurance
2.2 Layer 2 multicast
2.2.a Implement and troubleshoot IGMP
2.2.a (i) IGMPv1, IGMPv2, IGMPv3
2.2.a (ii) IGMP snooping
2.2.a (iii) IGMP querier
2.2.a (iv) IGMP filter
2.2.a (v) IGMP proxy
2.2.b Explain MLD
2.2.c Explain PIM snooping
2013 Cisco Systems, Inc. This document is Cisco Public. Page 4
2.3 Layer 2 WAN circuit technologies
2.3.a Implement and troubleshoot HDLC
2.3.b Implement and troubleshoot PPP
2.3.b (i) Authentication (PAP, CHAP)
2.3.b (ii) PPPoE
2.3.b (iii) MLPPP
2.3.c Describe WAN rate-based ethernet circuits
2.3.c (i) Metro and WAN Ethernet topologies
2.3.c (ii) Use of rate-limited WAN ethernet services
40% 3.0 Layer 3 Technologies
3.1 Addressing technologies
3.1.a Identify, implement and troubleshoot IPv4 addressing and subnetting
3.1.a (i) Address types, VLSM
3.1.a (ii) ARP
3.1.b Identify, implement and troubleshoot IPv6 addressing and subnetting
3.1.b (i) Unicast, multicast
3.1.b (ii) EUI-64
3.1.b (iii) ND, RS/RA
3.1.b (iv) Autoconfig/SLAAC, temporary addresses (RFC4941)
3.1.b (v) Global prefix configuration feature
3.1.b (vi) DHCP protocol operations
3.1.b (vii) SLAAC/DHCPv6 interaction
3.1.b (viii) Stateful, stateless DHCPv6
3.1.b (ix) DHCPv6 prefix delegation
3.2 Layer 3 multicast
3.2.a Troubleshoot reverse path forwarding
3.2.a (i) RPF failure
3.2.a (ii) RPF failure with tunnel interface
3.2.b Implement and troubleshoot IPv4 protocol independent multicast
3.2.b (i) PIM dense mode, sparse mode, sparse-dense mode
3.2.b (ii) Static RP, auto-RP, BSR
3.2.b (iii) BiDirectional PIM
3.2.b (iv) Source-specific multicast
3.2.b (v) Group to RP mapping
3.2.b (vi) Multicast boundary
3.2.c Implement and troubleshoot multicast source discovery protocol
3.2.c (i) Intra-domain MSDP (anycast RP)
3.2.c (ii) SA filter
3.2.d Describe IPv6 multicast
3.2.d (i) IPv6 multicast addresses
2013 Cisco Systems, Inc. This document is Cisco Public. Page 5
3.2.d (ii) PIMv6
3.3 Fundamental routing concepts
3.3.a Implement and troubleshoot static routing
3.3.b Implement and troubleshoot default routing
3.3.c Compare routing protocol types
3.3.c (i) Distance vector
3.3.c (ii) Link state
3.3.c (iii) Path vector
3.3.d Implement, optimize and troubleshoot administrative distance
3.3.e Implement and troubleshoot passive interface
3.3.f Implement and troubleshoot VRF lite
3.3.g Implement, optimize and troubleshoot filtering with any routing protocol
3.3.h Implement, optimize and troubleshoot redistribution between any routing protocol
3.3.i Implement, optimize and troubleshoot manual and auto summarization with any routing protocol
3.3.j Implement, optimize and troubleshoot policy-based routing
3.3.k Identify and troubleshoot sub-optimal routing
3.3.l Implement and troubleshoot bidirectional forwarding detection
3.3.m Implement and troubleshoot loop prevention mechanisms
3.3.m (i) Route tagging, filtering
3.3.m (ii) Split horizon
3.3.m (iii) Route poisoning
3.3.n Implement and troubleshoot routing protocol authentication
3.3.n (i) MD5
3.3.n (ii) Key-chain
3.3.n (iii) EIGRP HMAC SHA2-256bit
3.3.n (iv) OSPFv2 SHA1-196bit
3.3.n (v) OSPFv3 IPsec authentication
3.4 RIP (v2 and v6)
3.4.a Implement and troubleshoot RIPv2
3.4.b Describe RIPv6 (RIPng)
2013 Cisco Systems, Inc. This document is Cisco Public. Page 6
3.5 EIGRP (for IPv4 and IPv6)
3.5.a Describe packet types
3.5.a (i) Packet types (hello, query, update, and such)
3.5.a (ii) Route types (internal, external)
3.5.b Implement and troubleshoot neighbor relationship
3.5.b (i) Multicast, unicast EIGRP peering
3.5.b (ii) OTP point-to-point peering
3.5.b (iii) OTP route-reflector peering
3.5.b (iv) OTP multiple service providers scenario
3.5.c Implement and troubleshoot loop free path selection
3.5.c (i) RD, FD, FC, successor, feasible successor
3.5.c (ii) Classic metric
3.5.c (iii) Wide metric
3.5.d Implement and troubleshoot operations
3.5.d (i) General operations
3.5.d (ii) Topology table, update, query, active, passive
3.5.d (iii) Stuck in active
3.5.d (iv) Graceful shutdown
3.5.e Implement and troubleshoot EIGRP stub
3.5.e (i) Stub
3.5.e (ii) Leak-map
3.5.f Implement and troubleshoot load-balancing
3.5.f (i) equal-cost
3.5.f (ii) unequal-cost
3.5.f (iii) add-path
3.5.g Implement EIGRP (multi-address) named mode
3.5.g (i) Types of families
3.5.g (ii) IPv4 address-family
3.5.g (iii) IPv6 address-family
3.5.h Implement, troubleshoot and optimize EIGRP convergence and scalability
3.5.h (i) Describe fast convergence requirements
3.5.h (ii) Control query boundaries
3.5.h (iii) IP FRR/fast reroute (single hop)
3.5.8 (iv) Summary leak-map
3.5.h (v) Summary metric
3.6 OSPF (v2 and v3)
3.6.a Describe packet types
3.6.a (i) LSA yypes (1, 2, 3, 4, 5, 7, 9)
3.6.a (ii) Route types (N1, N2, E1, E2)
2013 Cisco Systems, Inc. This document is Cisco Public. Page 7
3.6.b Implement and troubleshoot neighbor relationship
3.6.c Implement and troubleshoot OSPFv3 address-family support
3.6.c (i) IPv4 address-family
3.6.c (ii) IPv6 address-family
3.6.d Implement and troubleshoot network types, area types and router types
3.6.d (i) Point-to-point, multipoint, broadcast, non-broadcast
3.6.d (ii) LSA types, area type: backbone, normal, transit, stub, NSSA, totally stub
3.6.d (iii) Internal router, ABR, ASBR
3.6.d (iv) Virtual link
3.6.e Implement and troubleshoot path preference
3.6.f Implement and troubleshoot operations
3.6.f (i) General operations
3.6.f (ii) Graceful shutdown
3.6.f (iii) GTSM (Generic TTL Security Mechanism)
3.6.g Implement, troubleshoot and optimize OSPF convergence and scalability
3.6.g (i) Metrics
3.6.g (ii) LSA throttling, SPF tuning, fast hello
3.6.g (iii) LSA propagation control (area types, ISPF)
3.6.g (iv) IP FRR/fast reroute (single hop)
3.6.g (v) LFA/loop-free alternative (multi hop)
3.6.g (vi) OSPFv3 prefix suppression
3.7 BGP
3.7.a Describe, implement and troubleshoot peer relationships
3.7.a (i) Peer-group, template
3.7.a (ii) Active, passive
3.7.a (iii) States, timers
3.7.a (iv) Dynamic neighbors
3.7.b Implement and troubleshoot IBGP and EBGP
3.7.b (i) EBGP, IBGP
3.7.b (ii) 4 bytes AS number
3.7.b (iii) Private AS
3.7.c Explain attributes and best-path selection
3.7.d Implement, optimize and troubleshoot routing policies
3.7.d (i) Attribute manipulation
3.7.d (ii) Conditional advertisement
3.7.d (iii) Outbound route filtering
3.7.d (iv) Communities, extended communities
3.7.d (v) Multi-homing
2013 Cisco Systems, Inc. This document is Cisco Public. Page 8
3.7.e Implement and troubleshoot scalability
3.7.e (i) Route-reflector, cluster
3.7.e (ii) Confederations
3.7.e (iii) Aggregation, AS set
3.7.f Implement and troubleshoot multiprotocol BGP
3.7.f (i) IPv4, IPv6, VPN address-family
3.7.g Implement and troubleshoot AS path manipulations
3.7.g (i) Local AS, allow AS in, remove private AS
3.7.g (ii) Prepend
3.7.g (iii) Regexp
3.7.h Implement and troubleshoot other features
3.7.h (i) Multipath
3.7.h (ii) BGP synchronization
3.7.h (iii) Soft reconfiguration, route refresh
3.7.i Describe BGP fast convergence features
3.7.i (i) Prefix independent convergence
3.7.i (ii) Add-path
3.7.i (iii) Next-hop address tracking
3.8 ISIS (for IPv4 and IPv6)
3.8.a Describe basic ISIS network
3.8.a (i) Single area, single topology
3.8.b Describe neighbor relationship
3.8.c Describe network types, levels and router types
3.8.c (i) NSAP addressing
3.8.c (ii) Point-to-point, broadcast
3.8.d Describe operations
3.8.e Describe optimization features
3.8.e (i) Metrics, wide metric
15% 4.0 VPN Technologies
4.1 Tunneling
4.1.a Implement and troubleshoot MPLS operations
4.1.a (i) Label stack, LSR, LSP
4.1.a (ii) LDP
4.1.a (iii) MPLS ping, MPLS traceroute
4.1.b Implement and troubleshoot basic MPLS L3VPN
4.1.b (i) L3VPN, CE, PE, P
2013 Cisco Systems, Inc. This document is Cisco Public. Page 9
4.1.b (ii) Extranet (route leaking)
4.1.c Implement and troubleshoot encapsulation
4.1.c (i) GRE
4.1.c (ii) Dynamic GRE
4.1.c (iii) LISP encapsulation principles supporting EIGRP OTP
4.1.d Implement and troubleshoot DMVPN (single hub)
4.1.d (i) NHRP
4.1.d (ii) DMVPN with IPsec using pre-shared key
4.1.d (iii) QoS profile
4.1.d (iv) Pre-classify
4.1.e Describe IPv6 tunneling techniques
4.1.e (i) 6in4, 6to4
4.1.e (ii) ISATAP
4.1.e (iii) 6RD
4.1.e (iv) 6PE/6VPE
4.1.g Describe basic layer 2 VPN —wireline
4.1.g (i) L2TPv3 general principals
4.1.g (ii) ATOM general principals
4.1.h Describe basic L2VPN — LAN services
4.1.h (i) MPLS-VPLS general principals
4.1.h (ii) OTV general principals
4.2 Encryption
4.2.a Implement and troubleshoot IPsec with pre-shared key
4.2.a (i) IPv4 site to IPv4 site
4.2.a (ii) IPv6 in IPv4 tunnels
4.2.a (iii) Virtual tunneling Interface (VTI)
4.2.b Describe GET VPN
5% 5.0 Infrastructure Security
5.1 Device security
5.1.a Implement and troubleshoot IOS AAA using local database
5.1.b Implement and troubleshoot device access control
5.1.b (i) Lines (VTY, AUX, console)
5.1.b (ii) SNMP
5.1.b (iii) Management plane protection
5.1.b (iv) Password encryption
5.1.c Implement and troubleshoot control plane policing
5.1.d Describe device security using IOS AAA with TACACS+ and RADIUS
2013 Cisco Systems, Inc. This document is Cisco Public. Page 10
5.1.d (i) AAA with TACACS+ and RADIUS
5.1.d (ii) Local privilege authorization fallback
5.2 Network security
5.2.a Implement and troubleshoot switch security features
5.2.a (i) VACL, PACL
5.2.a (ii) Stormcontrol
5.2.a (iii) DHCP snooping
5.2.a (iv) IP source-guard
5.2.a (v) Dynamic ARP inspection
5.2.a (vi) port-security
5.2.a (vii) Private VLAN
5.2.b Implement and troubleshoot router security features
5.2.b (i) IPv4 access control lists (standard, extended, time-based)
5.2.b (ii) IPv6 traffic filter
5.2.b (iii) Unicast reverse path forwarding
5.2.c Implement and troubleshoot IPv6 first hop security
5.2.c (i) RA guard
5.2.c (ii) DHCP guard
5.2.c (iii) Binding table
5.2.c (iv) Device tracking
5.2.c (v) ND inspection/snooping
5.2.c (vii) Source guard
5.2.c (viii) PACL
5.2.d Describe 802.1x
5.2.d (i) 802.1x, EAP, RADIUS
5.2.d (ii) MAC authentication bypass
15% 6.0 Infrastructure Services
6.1 System management
6.1.a Implement and troubleshoot device management
6.1.a (i) Console and VTY
6.1.a (ii) telnet, HTTP, HTTPS, SSH, SCP
6.1.a (iii) (T)FTP
6.1.b Implement and troubleshoot SNMP
6.1.b (i) v2c, v3
6.1.c Implement and troubleshoot logging
6.1.c (i) Local logging, syslog, debug, conditional debug
6.1.c (ii) Timestamp
6.2 Quality of service
6.2.a Implement and troubleshoot end-to-end QoS
6.2.a (i) CoS and DSCP mapping
2013 Cisco Systems, Inc. This document is Cisco Public. Page 11
6.2.b Implement, optimize and troubleshoot QoS using MQC
6.2.b (i) Classification
6.2.b (ii) Network based application recognition (NBAR)
6.2.b (iii) Marking using IP precedence, DSCP, CoS, ECN
6.2.b (iv) Policing, shaping
6.2.b (v) Congestion management (queuing)
6.2.b (vi) HQoS, sub-rate ethernet link
6.2.b (vii) Congestion avoidance (WRED)
6.2.c Describe layer 2 QoS
6.2.c (i) Queuing, scheduling
6.2.c (ii) Classification, marking
6.3 Network services
6.3.a Implement and troubleshoot first-hop redundancy protocols
6.3.a (i) HSRP, GLBP, VRRP
6.3.a (ii) Redundancy using IPv6 RS/RA
6.3.b Implement and troubleshoot network time protocol
6.3.b (i) NTP master, client, version 3, version 4
6.3.b (ii) NTP Authentication
6.3.c Implement and troubleshoot IPv4 and IPv6 DHCP
6.3.c (i) DHCP client, IOS DHCP server, DHCP relay
6.3.c (ii) DHCP options
6.3.c (iii) DHCP protocol operations
6.3.c (iv) SLAAC/DHCPv6 interaction
6.3.c (v) Stateful, stateless DHCPv6
6.3.c (vi) DHCPv6 prefix delegation
6.3.d Implement and troubleshoot IPv4 network address translation
6.3.d (i) Static NAT, dynamic NAT, policy-based NAT, PAT
6.3.d (ii) NAT ALG
6.3.e Describe IPv6 network address translation
6.3.e (i) NAT64
6.3.e (ii) NPTv6
6.4 Network optimization
6.4.a Implement and troubleshoot IP SLA
6.4.a (i) ICMP, UDP, Jitter, VoIP
6.4.b Implement and troubleshoot tracking object
6.4.b (i) Tracking object, tracking list
6.4.b (ii) Tracking different entities (e.g. interfaces, routes, IPSLA, and such)
6.4.c Implement and troubleshoot netflow
2013 Cisco Systems, Inc. This document is Cisco Public. Page 12
6.4.c (i) Netflow v5, v9
6.4.c (ii) Local retrieval
6.4.c (iii) Export (configuration only)
6.4.d Implement and troubleshoot embedded event manager
6.4.d (i) EEM policy using applet
6.4.e Identify performance routing (PfR)
6.4.e (i) Basic load balancing
6.4.e (ii) Voice optimization

 

LAB Topics:
==========
 
 
 
20% 1.0 Layer 2 Technologies
1.1 LAN switching technologies
1.1.a Implement and troubleshoot switch administration
1.1.a (i) Managing MAC address table
1.1.a (ii) errdisable recovery
1.1.a (iii) L2 MTU
1.1.b Implement and troubleshoot layer 2 protocols
1.1.b (i) CDP, LLDP
1.1.b (ii) UDLD
1.1.c Implement and troubleshoot VLAN
1.1.c (i) access ports
1.1.c (ii) VLAN database
1.1.c (iii) normal, extended VLAN, voice VLAN
1.1.d Implement and troubleshoot trunking
1.1.d (i) VTPv1, VTPv2, VTPv3, VTP pruning
1.1.d (ii) dot1Q
1.1.d (iii) Native VLAN
1.1.d (iv) Manual pruning
1.1.e Implement and troubleshoot etherchannel
1.1.e (i) LACP, PAgP, manual
1.1.e (ii) layer 2, layer 3
1.1.e (iii) load-balancing
1.1.e (iv) etherchannel misconfiguration guard
1.1.f Implement and troubleshoot spanning-tree
1.1.f (i) PVST+/RPVST+/MST
1.1.f (ii) switch priority, port priority, path cost, STP timers
1.1.f (iii) port fast, BPDUguard, BPDUfilter
1.1.f (iv) loopguard, rootguard
1.1.g Implement and troubleshoot other LAN switching technologies
2013 Cisco Systems, Inc. This document is Cisco Public. Page 2
1.1.g (i) SPAN, RSPAN, ERSPAN
1.2 Layer 2 Multicast
1.2.a Implement and troubleshoot IGMP
1.2.a (I) IGMPv1, IGMPv2, IGMPv3
1.2.a (ii) IGMP snooping
1.2.a (iii) IGMP querier
1.2.a (iv) IGMP filter
1.2.a (v) IGMP proxy
1.3 Layer 2 WAN circuit technologies
1.3.a Implement and troubleshoot HDLC
1.3.b Implement and troubleshoot PPP
1.3.b (i) authentication (PAP, CHAP)
1.3.b (ii) PPPoE
1.3.b (iii) MLPPP
1.4 Troubleshooting layer 2 technologies
1.4.a Use IOS troubleshooting tools
1.4.a (i) debug, conditional debug
1.4.a (ii) ping, traceroute with extended options
1.4.a (iii) Embedded packet capture
1.4.b Apply troubleshooting methodologies
1.4.b (i) Diagnose the root cause of networking issue (analyze symptoms, identify and describe root cause)
1.4.b (ii) Design and implement valid solutions according to constraints
1.4.b (iii) Verify and monitor resolution
1.4.c Interpret packet capture
1.4.c (i) Using wireshark trace analyzer
1.4.c (ii) Using IOS embedded packet capture
40% 2.0 Layer 3 Technologies
2.1 Addressing technologies
2.1.a Identify, implement and troubleshoot IPv4 addressing and sub-netting
2.1.a (i) Address types, VLSM
2.1.a (ii) ARP
2.1.b Identify, implement and troubleshoot IPv6 addressing and sub-netting
2.1.b (i) Unicast, multicast
2.1.b (ii) EUI-64
2.1.b (iii) ND, RS/RA
2.1.b (iv) Autoconfig/SLAAC temporary addresses (RFC4941)
2.1.b (v) Global prefix configuration feature
2.2 Layer 3 Multicast
2.2.a Troubleshoot reverse path forwarding
2.2.a (i) RPF failure
2.2.a(ii) RPF failure with tunnel interface
2013 Cisco Systems, Inc. This document is Cisco Public. Page 3
2.2.b Implement and troubleshoot IPv4 protocol independent multicast
2.2.b (i) PIM dense mode, sparse mode, sparse-dense mode
2.2.b (ii) Static RP, auto-RP, BSR
2.2.b (iii) Bidirectional PIM
2.2.b (iv) Source-specific multicast
2.2.b (v) Group to RP mapping
2.2.b (vi) Multicast boundary
2.2.c Implement and troubleshoot multicast source discovery protocol
2.2.c.(i) Intra-domain MSDP (anycast RP)
2.2.c.(ii) SA filter
2.3 Fundamental routing concepts
2.3.a Implement and troubleshoot static routing
2.3.b Implement and troubleshoot default routing
2.3.c Compare routing protocol types
2.3.c (i) distance vector
2.3.c (ii) link state
2.3.c (iii) path vector
2.3.d Implement, optimize and troubleshoot administrative distance
2.3.e Implement and troubleshoot passive interface
2.3.f Implement and troubleshoot VRF lite
2.3.g Implement, optimize and troubleshoot filtering with any routing protocol
2.3.h Implement, optimize and troubleshoot redistribution between any routing protocol
2.3.i Implement, optimize and troubleshoot manual and auto summarization with any routing protocol
2.3.j Implement, optimize and troubleshoot policy-based routing
2.3.k Identify and troubleshoot sub-optimal routing
2.3.l Implement and troubleshoot bidirectional forwarding detection
2.3.m Implement and troubleshoot loop prevention mechanisms
2.3.m (i) Route tagging, filtering
2.3.m (ii) Split horizon
2.3.m (iii) Route poisoning
2.3.n Implement and troubleshoot routing protocol authentication
2.3.n (i) MD5
2.3.n (ii) key-chain
2.3.n (iii) EIGRP HMAC SHA2-256bit
2.3.n (iv) OSPFv2 SHA1-196bit
2.3.n (v) OSPFv3 IPsec authentication
2.4 RIP v2
2.4.a Implement and troubleshoot RIPv2
2.5 EIGRP (for IPv4 and IPv6)
2.5.a Describe packet types
2.5.a (i) Packet types (hello, query, update, and such)
2.5.a (ii) Route types (internal, external)
2.5.b Implement and troubleshoot neighbor relationship
2013 Cisco Systems, Inc. This document is Cisco Public. Page 4
2.5.b (i) Multicast, unicast EIGRP peering
2.5.c Implement and Troubleshoot Loop free path selection
2.5.c (i) RD, FD, FC, successor, feasible successor
2.5.c (ii) Classic metric
2.5.c (iii) Wide metric
2.5.d Implement and troubleshoot operations
2.5.d (i) General operations
2.5.d (ii) Topology table, update, query, active, passive
2.5.d (iii) Stuck in active
2.5.d (iv) Graceful shutdown
2.5.e Implement and troubleshoot EIGRP stub
2.5.e (i) stub
2.5.e (ii) leak-map
2.5.f Implement and troubleshoot load-balancing
2.5.f (i) equal-cost
2.5.f (ii) unequal-cost
2.5.f (iii) add-path
2.5.g Implement EIGRP (multi-address) named mode
2.5.g (i) Types of families
2.5.g (ii) IPv4 address-family
2.5.g (iii) IPv6 address-family
2.5.h Implement, troubleshoot and optimize EIGRP convergence and scalability
2.5.h (i) Describe fast convergence requirements
2.5.h (ii) Control query boundaries
2.5.h (iii) IP FRR/fast reroute (single hop)
2.5.h (iv) Summary leak-map
2.5.h (v) Summary metric
2.6 OSPF (v2 and v3)
2.6.a Describe packet types
2.6.a (i) LSA types (1, 2, 3, 4, 5, 7, 9)
2.6.a (ii) Route types (N1, N2, E1, E2)
2.6.b Implement and troubleshoot neighbor relationship
2.6.c Implement and troubleshoot OSPFv3 address-family support
2.6.c (i) IPv4 address-family
2.6.c (ii) IPv6 address-family
2.6.d Implement and troubleshoot network types, area types and router types
2.6.d (i) Point-to-point, multipoint, broadcast, non-broadcast
2.6.d (ii) LSA types, area type: backbone, normal, transit, stub, NSSA, totally stub
2.6.d (iii) Internal router, ABR, ASBR
2.6.d (iv) Virtual link
2.6.e Implement and troubleshoot path preference
2.6.f Implement and troubleshoot operations
2.6.f (i) General operations
2.6.f (ii) Graceful shutdown
2.6.f (iii) GTSM (generic TTL security mechanism)
2013 Cisco Systems, Inc. This document is Cisco Public. Page 5
2.6.g Implement, troubleshoot and optimize OSPF convergence and scalability
2.6.g (i) Metrics
2.6.g (ii) LSA throttling, SPF tuning, fast hello
2.6.g (iii) LSA propagation control (area types, ISPF)
2.6.g (iv) IP FR/fast reroute (single hop)
2.6.g (v) LFA/loop-free alternative (multi hop)
2.6.g (vi) OSPFv3 prefix suppression
2.7 BGP
2.7.a Describe, implement and troubleshoot peer relationships
2.7.a (i) Peer-group, template
2.7.a (ii) Active, passive
2.7.a (iii) States, timers
2.7.a (iv) Dynamic neighbors
2.7.b Implement and troubleshoot IBGP and EBGP
2.7.b (i) EBGP, IBGP
2.7.b (ii) 4 bytes AS number
2.7.b (iii) Private AS
2.7.c Explain attributes and best-path selection
2.7.d Implement, optimize and troubleshoot routing policies
2.7.d (i) Attribute manipulation
2.7.d (ii) Conditional advertisement
2.7.d (iii) Outbound route filtering
2.7.d (iv) Communities, extended communities
2.7.d (v) Multi-homing
2.7.e Implement and troubleshoot scalability
2.7.e (i) Route-reflector, cluster
2.7.e (ii) Confederations
2.7.e (iii) Aggregation, AS set
2.7.f Implement and troubleshoot multi-protocol BGP
2.7.f (i) IPv4, IPv6, VPN address-family
2.7.g Implement and troubleshoot AS path manipulations
2.7.g (i) Local AS, allow AS in, remove private AS
2.7.g (ii) Prepend
2.7.g (iii) Regexp
2.7.h Implement and Troubleshoot Other Features
2.7.h (i) Multipath
2.7.h (ii) BGP synchronization
2.7.h (iii) Soft reconfiguration, route refresh
2.8 Troubleshooting layer 3 technologies
2.8.a Use IOS troubleshooting tools
2.8.a (i) debug, conditional debug
2.8.a (ii) ping, traceroute with extended options
2.8.a (iii) Embedded packet capture
2.8.b Apply troubleshooting methodologies
2.8.b (i) Diagnose the root cause of networking issue (analyze symptoms, identify and describe root cause)
2013 Cisco Systems, Inc. This document is Cisco Public. Page 6
2.8.b (ii) Design and implement valid solutions according to constraints
2.8.b (iii) Verify and monitor resolution
2.8.c Interpret packet capture
2.8.c (i) Using wireshark trace analyzer
2.8.c (ii) Using IOS embedded packet capture
20% 3.0 VPN Technologies
3.1 Tunneling
3.1.a Implement and troubleshoot MPLS operations
3.1.a (i) Label stack, LSR, LSP
3.1.a (ii) LDP
3.1.a (iii) MPLS ping, MPLS traceroute
3.1.b Implement and troubleshoot basic MPLS L3VPN
3.1.b (i) L3VPN, CE, PE, P
3.1.b (ii) Extranet (route leaking)
3.1.c Implement and troubleshoot encapsulation
3.1.c (i) GRE
3.1.c (ii) Dynamic GRE
3.1.d Implement and troubleshoot DMVPN (single hub)
3.1.d (i) NHRP
3.1.d (ii) DMVPN with IPsec using preshared key
3.1.d (iii) QoS profile
3.1.d (iv) Pre-classify
3.2 Encryption
3.2.a Implement and troubleshoot IPsec with preshared key
3.2.a (i) IPv4 site to IPv4 site
3.2.a (ii) IPv6 in IPv4 tunnels
3.2.a (iii) Virtual tunneling interface (VTI)
3.3 Troubleshooting VPN technologies
3.3.a Use IOS troubleshooting tools
3.3.a (i) debug, conditional debug
3.3.a (ii) ping, traceroute with extended options
3.3.a (iii) Embedded packet capture
3.3.b Apply troubleshooting methodologies
3.3.b (i) Diagnose the root cause of networking issue (analyze symptoms, identify and describe root cause)
3.3.b (ii) Design and implement valid solutions according to constraints
3.3.b (iii) Verify and monitor resolution
3.3.c Interpret packet capture
3.3.c (i) Using wireshark trace analyzer
3.3.c (ii) Using IOS embedded packet capture
5% 4.0 Infrastructure Security
4.1 Device security
4.1.a Implement and troubleshoot IOS AAA using local database
4.1.b Implement and troubleshoot device access control
2013 Cisco Systems, Inc. This document is Cisco Public. Page 7
4.1.b (i) Lines (VTY, AUX, console)
4.1.b (ii) SNMP
4.1.b (iii) Management plane protection
4.1.b (iv) Password encryption
4.1.c Implement and troubleshoot control plane policing
4.2 Network security
4.2.a Implement and troubleshoot switch security features
4.2.a (i) VACL, PACL
4.2.a (ii) Stormcontrol
4.2.a (iii) DHCP snooping
4.2.a (iv) IP source-guard
4.2.a (v) Dynamic ARP inspection
4.2.a (vi) Port-security
4.2.a (vii) Private VLAN
4.2.b Implement and troubleshoot router security features
4.2.b (i) IPv4 access control lists (standard, extended, time-based)
4.2.b (ii) IPv6 traffic filter
4.2.b (iii) Unicast reverse path forwarding
4.2.c Implement and troubleshoot IPv6 first hop security
4.2.c (i) RA guard
4.2.c (ii) DHCP guard
4.2.c (iii) Binding table
4.2.c (iv) Device tracking
4.2.c (v) ND inspection/snooping
4.2.c (vi) Source guard
4.2.c (vii) PACL
4.3 Troubleshooting infrastructure security
4.3.a Use IOS troubleshooting tools
4.3.a (i) debug, conditional debug
4.3.a (ii) ping, traceroute with extended options
4.3.a (iii) Embedded packet capture
4.3.b Apply troubleshooting methodologies
4.3.b (i) Diagnose the root cause of networking issue (analyze symptoms, identify and describe root cause)
4.3.b (ii) Design and implement valid solutions according to constraints
4.3.b (iii) Verify and monitor resolution
4.3.c Interpret packet capture
4.3.c (i) Using wireshark trace analyzer
4.3.c (ii) Using IOS embedded packet capture
15% 5.0 Infrastructure Services
5.1 System management
5.1.a Implement and troubleshoot device management
5.1.a (i) Console and VTY
5.1.a (ii) telnet, HTTP, HTTPS, SSH, SCP
5.1.a (iii) (T)FTP
2013 Cisco Systems, Inc. This document is Cisco Public. Page 8
5.1.b Implement and troubleshoot SNMP
5.1.b (i) v2c, v3
5.1.c Implement and troubleshoot logging
5.1.c (i) Local logging, syslog, debug, conditional debug
5.1.c (ii) Timestamp
5.2 Quality of service
5.2.a Implement and troubleshoot end to end QoS
5.2.a (i) CoS and DSCP mapping
5.2.b Implement, optimize and troubleshoot QoS using MQC
5.2.b (i) Classification
5.2.b (ii) Network based application recognition (NBAR)
5.2.b (iii) Marking using IP precedence, DSCP, CoS, ECN
5.2.b (iv) Policing, shaping
5.2.b (v) Congestion management (queuing)
5.2.b (vi) HQoS, sub-rate ethernet link
5.2.b (vii) Congestion avoidance (WRED)
5.3 Network services
5.3.a Implement and troubleshoot first-hop redundancy protocols
5.3.a (i) HSRP, GLBP, VRRP
5.3.a (ii) Redundancy using IPv6 RS/RA
5.3.b Implement and troubleshoot network time protocol
5.3.b (i) NTP master, client, version 3, version 4
5.3.b (ii) NTP authentication
5.3.c Implement and troubleshoot IPv4 and IPv6 DHCP
5.3.c (i) DHCP client, IOS DHCP server, DHCP relay
5.3.c (ii) DHCP options
5.3.c (iii) DHCP protocol operations
5.3.c (iv) SLAAC/DHCPv6 interaction
5.3.c (v) Stateful, stateless DHCPv6
5.3.c (vi) DHCPv6 prefix delegation
5.3.d Implement and troubleshoot IPv4 network address translation
5.3.d (i) Static NAT, dynamic NAT, policy-based NAT, PAT
5.3.d (ii) NAT ALG
5.4 Network optimization
5.4.a Implement and troubleshoot IP SLA
5.4.a (i) ICMP, UDP, jitter, VoIP
5.4.b Implement and troubleshoot tracking object
5.4.b (i) Tracking object, tracking list
5.4.b (ii) Tracking different entities (e.g. interfaces, routes, IPSLA, and such)
5.4.c Implement and troubleshoot netflow
5.4.c (i) Netflow v5, v9
5.4.c (ii) Local retrieval
5.4.c (iii) Export (configuration only)
5.4.d Implement and troubleshoot embedded event manager
5.4.d (i) EEM policy using applet
2013 Cisco Systems, Inc. This document is Cisco Public. Page 9
5.5 Troubleshooting infrastructure services
5.5.a Use IOS troubleshooting tools
5.5.a (i) debug, conditional debug
5.5.a (ii) ping, traceroute with extended options
5.5.a (iii) Embedded packet capture
5.5.b Apply troubleshooting methodologies
5.5.b (i) Diagnose the root cause of networking issue (analyze symptoms, identify and describe root cause)
5.5.b (ii) Design and implement valid solutions according to constraints
5.5.b (iii) Verify and monitor resolution
5.5.c Interpret packet capture
5.5.c (i) Using wireshark trace analyzer
5.5.c (ii) Using IOS embedded packet capture

Thanks….

 

Problem uploading Thawte issued certificate on the Cisco WLC….Certificate not properly chained.

Recently I came upon couple of scenarios where the Cisco WLC would not accept a web-auth server cert issued by Thawte (Known CA). This is because the later version of the Cisco WLC (I believe 7.6 and above) need to have a chained certificate before you can upload it on the WLC.If you do further debugging on the WLC you will see the following error logs, which clearly points to the problem with the issuer certificate:

*TransferTask: Feb 12 12:26:05.987: Adding cert (7728 bytes) with certificate key password.
*TransferTask: Feb 12 12:26:06.015: sshpmCheckWebauthCert: Verification return code: 0
*TransferTask: Feb 12 12:26:06.015: Verification result text: unable to get issuer certificate
*TransferTask: Feb 12 12:26:06.015: Error at 2 depth: unable to get issuer certificate
*TransferTask: Feb 12 12:26:06.027: sshpmAddWebauthCert: Error decoding certificate, Deleting it.
*TransferTask: Feb 12 12:26:06.027: RESULT_STRING: Error installing certificate.
*TransferTask: Feb 12 12:26:06.027: RESULT_CODE:12
*TransferTask: Feb 12 12:26:06.027: Memory overcommit policy restored from 1 to 0
*emWeb: Feb 12 12:26:07.041: sshpmGetIdCertIndex: called to lookup cert >bsnSslWebauthCert<
*emWeb: Feb 12 12:26:07.041: sshpmGetIdCertIndex: found match in row 4
*emWeb: Feb 12 12:26:07.041: sshpmGetCID: called to evaluate <bsnSslWebauthCert>
*emWeb: Feb 12 12:26:07.041: sshpmGetCID: comparing to row 0, CA cert >bsnOldDefaultCaCert<

When you open the cert it does not appear to have any problem and the cert will look perfect. You OS will also not recognize it as invalid, this is because your laptop already has the Root and the Intermediate Certificate installed and even if the cert is not correctly chained it marks it as valid unlike the WLC.

 

Following is the mmc snapshot of the known Trusted CA on my laptop.

Now lets look at where the problem is:
==================================
One you open the certificate in a notepad you will see the following format:

Server Cert >>> Intermediate Cert >>> Root Cert (Generally the Root Cert should validate itself i.e the Root Cert is Root CA issuing itself a cert like below, where the issuer and the issued to is the same.)

The certificate looks something like this: (For security I have not shown the entire certificate).

Bag Attributes
localKeyID: 3B DB 85 15 63 AF CA B7 57 27 4E A3 E5 0B 84 32 1D AC 06 18
subject=/C=XX/ST=XX/L=Sydney/O=XX/OU=XX/CN=XY.com.au
issuer=/C=US/O=thawte, Inc./CN=thawte SSL CA – G2

—–BEGIN CERTIFICATE—–
MIIE/TCCA+WgAwIBAgIQF//T50TPBQL4+/7Iqh7dsTANBgkqhkiG9w0BAQsFADBB
—————-Snipping————————————
MQswCQYDVQQGEwJVUzEVMBMGA1UEChMMdGhhd3RlLCBJbmMuMRswGQYDVQQDExJ0
—–END CERTIFICATE—–

Bag Attributes: <No Attributes>
subject=/C=US/O=thawte, Inc./CN=thawte SSL CA – G2
issuer=/C=US/O=thawte, Inc./OU=Certification Services Division/OU=(c) 2006 thawte, Inc. – For authorized use only/CN=thawte Primary Root CA

—–BEGIN CERTIFICATE—–
MIIEsjCCA5qgAwIBAgIQFofWiG3iMAaFIz2/Eb9llzANBgkqhkiG9w0BAQsFADCB
———————Snipping————————————-
sjFuz4DliAc2UXu6Ya9tjSNbNKOVvKIxf/L157fo78S1JzLp955pxyvovrsMqufq
YBLqJop4
—–END CERTIFICATE—–

Bag Attributes: <No Attributes>
subject=/C=US/O=thawte, Inc./OU=Certification Services Division/OU=(c) 2006 thawte, Inc. – For authorized use only/CN=thawte Primary Root CA
issuer=/C=ZA/ST=Western Cape/L=Cape Town/O=Thawte Consulting cc/OU=Certification Services Division/CN=Thawte Premium Server CA/emailAddress=premium-server@thawte.com

—–BEGIN CERTIFICATE—–
MIIERTCCA66gAwIBAgIQM2VQCHmtc+IwueAdDX+skTANBgkqhkiG9w0BAQUFADCB
————————Snipping————————————
95OBBaqStB+3msAHF/XLxrRMDtdW3HEgdDjWdMbWj2uvi42gbCkLYeA=
—–END CERTIFICATE—–

So if we go through the certificate we see the certificate being issued to XY.com.au by thawte SSL CA – G2 (Intermediate CA).

Down the chain we see the Intermediate CA cert, cert issue to thawte SSL CA – G2 by thawte Primary Root CA (Can be a Root or another Intermediate CA).

Further down the chain we see thawte Primary Root CA being issued a cert by Thawte Premium Server CA and there is no other cert following this.

So the problem here is either thawte Primary Root CA can be a Root CA or an Intermediate CA. If it is a Root CA, the last cert is chain should had been for thawte Primary Root CA issued by thawte Primary Root CA itself.

If it is an intermediate CA, there should have been another cert down the chain, issued to Thawte Premium Server CA by itself, it being the Root.

In this scenario the WLC is looking for the Root Cert which is not there is the chain and thus marks the certificate as invalid.

How to fix this:
==============

Thawte do provide the Root CA and Intermediate CA cert on its website from where you can download the missing cert easily.

https://www.thawte.com/roots/index.html

So the fix would be either make thawte Primary Root CA as the Root CA and download the cert file for the Thawte website and replace the last cert in the chain, so that we have the cert for thawte Primary Root CA issued by thawte Primary Root CA.


Or, keep the same chain and download the Root CA cert for Thawte Premium Server CA and add it at the end of the chain so that the certificate chain is complete.

Once the chain is complete please follow the Cisco document to compile the cert along with the private key and get the final cert.

Please refer to the previous posts on certs:

http://rameshkumarroy.com/creating-chained-certificate-fro/

Hope this was helpful.

 

IP-Helper Misconceptions

Like many other, I was under a misconception that IP-HELPER command was only used for relaying DHCP packets, until recently I found other uses of IP-HELPER.

As we know we configure helper address so that the L3 device can redirect the broadcast packets as a unicast to the helper address. Routers use helper addresses to forward broadcasts to another server or router on another network.

DHCP is not the only critical service that uses broadcasts. Cisco routers and other devices might use broadcasts to locate TFTP servers. Some clients might need to broadcast to locate a TACACS security server. In a complex hierarchical network, clients might not reside on the same subnet as key servers. These broadcast requests would be dropped by the Router as per its default behavior.

Some clients are unable to make a connection without services such as DHCP. For this reason, the administrator must provide DHCP and DNS servers on all subnets or use the Cisco IOS software helper address feature. Running services such as DHCP or DNS on several computers creates overhead and administrative problems, so the first option is not very appealing. When possible, administrators use the ip helper-address command to relay broadcast requests for these key User Datagram Protocol (UDP) services.

By using the ip helper-address command, a router can be configured to accept a broadcast request for a UDP service and then forward it as a unicast to a specific IP addressBy using the ip helper-address command, a router can be configured to accept a broadcast request for a UDP service and then forward it as a unicast to a specific IP address.

By default, the ip helper-address command forwards the eight UDP services.By default, the ip helper-address command forwards the eight UDP services

Service Port
Time 37
TACACS 49
DNS 53
BOOTP/DHCP Server 67
BOOTP/DHCP Client 68
TFTP 69
NetBIOS name service 137
NetBIOS datagram service 138

 

In addition to the default eight services the Cisco IOS software provides the global configuration command ip forward-protocol to allow an administrator to forward any UDP port.

To forward UDP on port 517, use the global configuration command ip forward-protocol udp 517. You can also take off the default services using the same command using the keyword “no”.

Example:
==========
RTA(config-if)#ip helper-address 192.168.1.254
RTA(config-if)#exit
RTA(config)#ip forward-protocol udp 517
RTA(config)#no ip forward-protocol udp 37
RTA(config)#no ip forward-protocol udp 49
RTA(config)#no ip forward-protocol udp 137

 

Hope this was helpful…